Assessing the merits of resonant magnetic perturbations with different toroidal mode numbers for controlling edge localised modes

نویسندگان

  • I. T. Chapman
  • A. Kirk
  • R. J. Akers
  • C. J. Ham
  • J. R. Harrison
  • J. Hawke
  • Y. Q. Liu
  • K. G. McClements
  • S. Pamela
  • S. Saarelma
  • R. Scannell
  • A. J. Thornton
چکیده

An increase in ELM frequency has been demonstrated in MAST by applying resonant magnetic perturbations (RMPs) with toroidal mode number, nRMP = 2, 3, 4, 6. It has been observed that the mitigated ELM frequency increases with the amplitude of the applied field provided it is above a critical threshold. This threshold value depends on the mode number of the RMP, with higher nRMP having a larger critical value. For the same ELM frequency, the reduction in the peak heat load on the divertor plates is approximately the same for all RMP configurations. The RMPs give rise to perturbations to the plasma shape, with lobe structures occurring due to the tangled magnetic fields near the X-point, and corrugations of the plasma boundary at the midplane. The X-point lobe length increases linearly with the applied field when above a threshold, with RMPs of higher toroidal mode number giving rise to longer lobes for the same applied resonant field. Similarly, the midplane displacements increase with the applied field strength, though the corrugation amplitude is less dependent upon the RMP configuration. For all nRMP, the RMPs result in enhanced particle transport and a reduction in the pedestal pressure gradient caused by an increased pedestal width, which is found to be consistent with a decrease in the critical pressure at which infinite-n ballooning modes are driven unstable in non-axisymmetric plasmas. The plasma rotation braking is strongest for lowest nRMP whilst the degradation of access to H-mode resultant from the application of RMPs are non-monotonic in nRMP, with the optimal case for both occurring for nRMP = 4. Whilst there are advantages and disadvantages for all RMP configurations, the configurations found to be optimised in terms of pedestal degradation, access to H-mode, plasma rotation and distortion to the plasma configuration in MAST are nRMP = 3 or 4, consistent with the configurations anticipated for use in ITER.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX Upgrade.

First experiments with nonaxisymmetric magnetic perturbations, toroidal mode number n=2, produced by newly installed in-vessel saddle coils in the ASDEX Upgrade tokamak show significant reduction of plasma energy loss and peak divertor power load associated with type-I edge localized modes (ELMs) in high-confinement mode plasmas. ELM mitigation is observed above an edge density threshold and is...

متن کامل

UW-CPTC 11-15R4 Resonant-magnetic-perturbation-induced plasma transport in H-mode pedestals

Plasma toroidal rotation reduces reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational (q = m/n) magnetic flux surfaces. Hence, it causes radial perturbations δBρm/n to be small there, and thus inhibits magnetic island formation and stochasticity in the edge of high (H-) mode confinement tokamak plasmas. However, electron collisional damping combined with...

متن کامل

A wavelet-based method to measure the toroidal mode number of ELMs

The high confinement mode regime (H-mode) in tokamaks is accompanied by the occurrence of burst of MHD activity at the plasma edge, so-called edge localized modes (ELMs). Because of the short time scales involved in the ELM crash (on JET typically 0.2 ms), standard Fourier analysis can hardly be used to extract their toroidal mode number. On the other hand, the assessment of linear stability of...

متن کامل

Effects of 3D Magnetic Perturbations on Toroidal Plasmas

Small 3D magnetic perturbations have many interesting and useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n. Low n non-r...

متن کامل

Dynamical Plasma Response of Resistive Wall Modes to Changing External Magnetic Perturbations

The plasma response to external resonant magnetic perturbations is measured as a function of stability of the resistive wall mode ~RWM!. The magnetic perturbations are produced with a flexible, high-speed waveform generator that is preprogrammed to drive an in-vessel array of 30 independent control coils and to produce an m/n53/1 helical field. Both quasi-static and ‘‘phase-flip’’ magnetic pert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017